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HARDWARE LEVEL INTERRUPTS FOR THE 2900 FAMILY

by Donnamaie E. White

Interrupt handling at the firmware or the software level is
satisfactory for CPUs, emulators, and other systems where the
interrupts are to be recognized under programmer control.
These "soft" interrupts are not adequate when the response
must be immediate. When "realtime" response is desired then
hardware level interrupts are necessary.

There are a number of solutions possible using the Am2910
microprogram sequencer and the Am2914 priority interrupt
controller. Three of these solutions appeared in a paper by
Vernon Coleman ("Microprogram Interrupts: When and How"),
segments of which have appeared in various articles. This
application note will discuss those three techniques in detail
and clarify their operation.

Figure 1 shows a "typical" microprogram control interrupt’
scheme. The sequencer is the Am2910 and the three address
sources for the Am2910 are the pipeline branch address field
(Am29774/5s), the memory map (labeled instruction map on the
figure), and the vector map. The Am2910 is shown connected to
all of the address source output enables. The interrupt
request line of the Am2914 is the only test input available to
the Am2910 in this figure and therefore the traditional
conditional multiplexer is absent. There are four devices
connected to the interrupt request inputs of the Am2914
(prioritized). No ALU is shown.
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Figure 2 shows the overview flowchart for the traditional
placement of interrupt testing using CJV (and not CJS). The
number of microinstructions between interrupt tests is various
depending on the microroutine being executed. It is
satisfactory for a CPU.

Figure 3 shows the desirable flowchart where a test for
interrupt occurrence is made every other microcycle. This
doubles the microcode required to execute any sequence and
halves the throughput and is not acceptable for CPUs or
controllers.

Figure 4. Microword format for a typical microprogram control
interrupt scheme (firmware level).

2ddr < SEQUENCE CONTROL —> <-—— INTERRUPT ———> <- OUTPUT ENABLES —>

" A2910 COND BR ADDR/ Am2914 Am2914 Am2914  OF, OE,, OB OTHER. . .
INSTR MUX COUNTER  INSTR Ten INT DIS

4 3 12 4 1 1 11 1 ceo

i: Qv ANY # READVCTR EN EN DIS DIS EN oee

Figure 4 above shows the microword required for the case
diagrammed in figure 2. - Remember that when the interrupts are
tested at only one location (within the common code segment)
then a return address need not be saved. This means that a
subroutine is not required and also means that nesting of
interrupts is not permissible.. CJV, the conditional jump
vector instruction of the Am2910 is adequate ‘and the three
address sources for the Am2910 may be controlled via the
output enables provided by the Am2910 or via the microword
jtself as shown. Remember the speed versus microword size

tradeoff.
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Figure 5. Microword for "realtime" microprogram interrupt
control.

addr <~ SEQUENCE CONTROL —> <——— INTERRUPT —-——> <- OUTPUT ENABLES ->

AT2910 COND BR ADDR/ Am2914 Am2914 Am2914  OE_. OE,,. OF OTHER. . .
INSTR MUX COUNTER  INSTR Ten INT DIS ' ° Fiap “vECT

4 3 12 4 1 1l 1 1 1 eeoo

i: GJS ANY # READVCTR  EN EN DIS DIS EN oo o0

Figure 5 shows the microword for the case diagrammed in Figure
3. This microinstruction would have to be inserted in the
microprogram such that it would be executed every other

" microcycle. Obviously, it is desirable to find a more
practical solution (in terms of throughput) than what can be
obtained via a firmware solution.

HARDWARE SOLUTIONS

The three hardware solutions which will be discussed are:
1) a single microprogram controller realtime

interrupt scheme
2) external storage for the microprogram controller
3) multiple microprogram controllers with realtime

interrupt handling

SINGLE MICROPROGRAM CONTROLLER REALTIME INTERRUPT SCHEME

The basic hardware configuration for this scheme is given in
figure 6. The interrupt request line ("ANY") is connected to
the output enable pin of the Am2910, the carry-in pin of the
incrementer on-board the Am2910, and the enable to the
hardwired interrupt vector. (This is a modification to the
drawing shown in the paper by Vernon Coleman.) The
conditional multiplexer is shown connected to the test input
on the Am2910 and all other tests would be made via firmware.



]a
T,

Yow
anoy

b 4
£
b
HOLO3A HITANVH
LdNYYILNI Lig-2tL Sll62/vlL62WY -
.\\ 7 \\
ct [4} vl
_ -2 ) )
SI1Q INI |~ /
A
03U ANy S >0 &0
plL6zWY .
11
NVl
L )
123A A oreTwy
. .ol.,.vﬂ.a
2704
[ X N ] _
‘ ﬂ » M a
u c | 30
S1NdNI LdNHYILNI WOHd dVW -,
a
WOHd dVIN 20
NOILONHLSNI =¥
9 Tz
/7 .
sng viva

AWIHOS LdNHHILNI HIONINDIAS JTONIS
L9 ¥ 3HNOI4
e _

.



HARDWARE LEVEL INTERRUPTS WITH THE 2900 FAMILY PAGE 4

Am2914

On the occurrence of an interrupt, the Am2910 operation is
suspended at the point in the microprogram at which it was
executing by pulling the carry—ln pin LOW (which prevents the
incrementer from incrementing, i.e., the microprogram register
will not advance) and by pulling the output enable high,
disabling the Yi outputs of the Am2910 from the mlcroprogram
control memory address lines (Am29774/5s).

Notice that the FULL pin of the Am2910 is used to disable the
interrupt request from reaching the Am2910.

INTERRUPT DURING SEQUENTIAL EXECUTION

The microinstruction which is in process (which is resident in
the microinstruction or pipeline register) is completed while
the contents of the microprogram counter (uPC), the address of
the next instruction in sequence, is held constant. On the
next clock rising edge the uPC register will receive the same
contents that it had held prior to the clock because the
carry-in pin is LOW. Since the Am2910 outputs are disabled,
the tristated outputs are pulled to the value of the enabled
interrupt handler vector.

INTERRUPT WHEN BRANCHING

If an 1nterrupt occurs when a branch address is belng fetched,
the process is the same with the following exception. The uPC
reglster will contain the non-incremented branch address after
the rising edge of the next clock cycle. If the branch was a
branch to a subroutine, and the stack would have been full
after the rising edge of the next clock, there is a problem!
If the main body of code and the interrupt routines themselves
contain no imbedded subroutines, then this deficiency will not
matter.
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INTERRUPT HANDLER

The interrupt handler drives a specific address onto the
address lines of the microprogram control memory. Note that
the same address is used for every interrupt. The instruction
that would be placed at that address is shown in figure 7.

Figure 7. Interrupt handler microinstruction.

addr <- SEQUENCE CONTROL -> <--— INTERRUPT --—> <- OUTPUT ENABLES ->

AM2910 COND BR ADDR/ Am2914 Am2914 Am2914 OF 6'1—:“PP OE. OTHER. . .
INSTR MUX COUNTER INSTR Ien INT DIS FL EVECT

4 3 12 4 1l 1 1 1 1l e0oo

hdlr: CJS PASS # READVCTR EN DIS DIS DIS EN . eowe

The execution of the handler CJS microinstruction is carried
out with a disable sent to the Am2914 to prevent any other
interrupt from destroying the handler. The first

Am2914 interrupts disabled while it clears the last vector
read (set by READ VECTOR). The second microinstruction then

enables the interrupt request. These instructions are shown.
in figure 8. The last microinstruction in the interrupt
routine is a return to the interrupted sequence, also executed
with interrupts disabled. Remember that there is a limit to
the depth that these interrupts may nest themselves and that
is controlled by the depth of the stack on the Am2910 (five).
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Figure 8. 1Interrupt routine microinstructions. -
addr <—- SEQUENCE CONTROL —> <-——-— INTERRUPT --——> <- OUTPUT ENABLES ->

AT2910 COND BR ADDR/ Am2914 Am2914 Am2914 OE 5E]— !;; OE. _  OTEHER...
INSTR MUX COUNTER INSTR Ien ﬁh?DIS PL EVECT

4 3 12 4 1 1 1 1 1 oo

i: CONT # # CLRLSTRD EN DIS EN DIS DIS oo e
i+l: CONT # # ENABLINTR EN EN EN DIS DIS [N )
j+m: CRIN PASS # # DIS DIS EN DIS DIS eee®

CLRLSTRD = CLEAR LAST VECTOR READ . A _ .
ENABLINTR = ENABLE INTERRUPTS (IF DISABLED PREVIOUSLY)

PROBLEMS

The first problem has already been mentioned, that is, if a
branch to a subroutine is in process, there is no way to know
whether or not the Am2910 stack is full. This can be resolved
by always executing CJS with the interrupts disabled.

(The original design did not make use of the FULL pin.)

The second problem with this design is the failure to provide
storage for the register/counter. This means that either all
interrupts must be disabled during loops which make use of the
counter, or code segments which use the register to store a
later-referenced address, or no interrupt routine may make use
of the register/counter. If no interrupt routine makes use of
the register/counter, then there is no problem with lengthy
stretches of execution during which interrupts are ignored.

This technique requires a minimal amount of SSI logic to
implement and uses only one or two "overhead" instructions.



HARDWARE LEVEL INTERRUPTS FOR THE 2900 FAMILY PAGE 7

Am2914

EXTERNAL STORAGE FOR THE Am2910

The second realtime interrupt approach is shown in figure 9.
This implementation provides an array of three Am2932 program
control units (used as a LIFO stack). The Am2932 instruction
lines I2 and I3 are grounded. This structure enables an
interrupt to suspend the Am2910 as in the previous example.
The additional control here is to allow the carry-in pin of
the Am2910 to be re-enabled while keeping the Yi outputs

disabled.

On interrupt, the Am2910 is suspended as before. The
difference is that the first microinstruction executed (which
was the handler step) now enables the next address field in
the microprogram control memory. The address which is
hardwired is the address of an instruction causing control of
the system to be turned over to a portion of the control
memory which is essentially a state machine. This state
machine proceeds to unload the Am2910 local control storage
into the Am2932 (onto a stack) via repeated PUSHs.

Note that the Am2910 is operating but is not allowed to alter
any of its internal storage (other than to offload it) and is
prevented, via the memory buffer gates, from reaching the
address lines of the control memory.
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implement this activity. The eighth step, shown in figure 10,
is a jump to an individual interrupt routine. At this point
the Am2910 resumes normal operation and the next address field
(used only by the state machines) is disabled. The interrupt
routine clears the interrupt and re-enables the Am2914. The
last step of all interrupt routines is a jump back to the
handler (CJP since the address is fixed and known).

The last seven microinstructions of the handler are also
controlled by a state machine and this time the reverse
operation is performed. The Am2910 is again restricted from
reaching the control memory address lines while the stack on
the Am2932s is POPped and the original state of the Am2910 is

restored.

Figure 10 lays out the partial microword for this part of the
system and provided the microwords required for the two state
machines and the initial steps of any interrupt routine.
Notice that this implementation requires a much wider
microinstruction and additional hardware over the previous
solution.
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PROBLEMS

The problems with this suggested solution are obvious (or
should be if you have taken ED2910, ED2900A or ED2900B).

First, there is an incredibly high overhead (fifteen

‘microcycles per interrupt excluding the interrupt branch and
the return microinstructions).

~Second, if the Am2910 stack is not full, then it is
mishandled. There will always be five POPs even if the stack
is empty! There will always be five PUSHs to restore the
empty stack, which now thinks that it is full! The solution
to this dlfflculty is to only allow interrupts to occur when
the stack is full (which is nonsense) or ‘to add yet more
hardware in the form of an external up/down counter whch would
keep track of the actual size of the stack. The state machine
would now have to incorporate conditional instructions (as
per Wilke's paper) such that only valid stack items are saved
and restored. This increases the complexity of the solution,
the size of the control memory (depth and width) and the
related debug, documentation, and other human-comprehension
problems.

A compromise solution would be to disable interrupts when the
stack is in use and only save the microprogram counter and the
register/counter. This would bring us back to approximately
the system of figure 6.

Third, the interrupts would have to be disabled during the
long overhead steps required for each interrupt.

Fourth, if interrupts are allowed to nest, then the stack on
the Am2932 would be exceeded on the third interrupt. The

.stack on the Am2932 is 17 deep. The Am2932 does have a FULL
pin and it could be used to disable interrupts. This leaves
us again with long stretches of time when interrupts are not
serviced in the manner we specified as desirable.

The conclusion of this author is that this technique is not

acceEtable.



HARDWARE LEVEL INTERRUPTS FOR THE 29200 FAMILY PAGE 10

Am2914

PARALLEL SEQUENCERS

The previously described approach is awkward, conceptually
complex, potentially dangerous, and therefore is not
recommended except as a mental exercise (to see if you really
do understand the parts involved)! A more interesting
approach is to "stack switch" between two or more Am2910s
connected in parallel. The operational Am2910 would be
selected via a synchronous up/down counter and decoder, as
shown in figure 11.

The hardware required would be the extra Am2910s (watch the
heat/power figures on the board), SSI logic to control both
the output enables of the Yi lines of each Am2910 and the
clock input pins of each Am2910, the synchronous counter,
sized for the application, and a decoder, also sized. A
hardwired interrupt handler vector is required as in the other
two cases.

The design fequires a little more than is shown. The

interrupts would have to be disabled when the last Am2910 is
active and re-enabled when it becomes available. The number

of Am2910s chosen should reflect how deep the interrupts could
typically nest and not how deep they could nest in the worst
case (unless the application is extremely demanding). The use
of a typical depth would be a compromise between cost and
performance. If interrupts are not allowed to nest but are
handled only one at a time, then interrupts would be disabled
any time an interrupt is being serviced and only two Am2910s
would be necessary. Two to four is probably an adequate
solution, providing fast response for the first one, two, or
three to arrive.
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The counter is used to control the active Am2910 as follows.
When the counter increments, the decoder generates a different
active enable Ei control which in turn causes one Am2910 (the
one which was active) to be suspended as is and the next
Am2910 in line to be activated. As the interrupt routine
ends, the last step is to decrement the counter, which allows
the system to return to its previous condition.

The éarry—out from the counter can be used to disable the
interrupts on the activation of the last Am2910.

Figure 12. Microinstructions to support stack switching.

addr <- SEQUENCE CONTROL —-> <—- INTERRUPT —--——> <-— OUTPUT ENABLES ->

AT2910 COND BR.ADDR/ Am2914 Am2914 Am2914 O, OFynp OEyp.q COUNTER OTHER...
INSTR MUX COUNTER INSTR Ien INT DIS T ' " ENABL

4 3 12 4 1 1 1 1 1 cee e

HARDWIRED INSTRUCTION:

hdlr: CJS PASS # READVCTR EN DIS DIs DIS EN DIS eee
ROUTINE:

i: CONT # # CLRLSTRD EN DIS EN DIsS DIS DIS eeo o
i+l: CONT # # ENINTR EN EN EN DIS DIS EN eeo o

i+n:CRTN  PASS # # DIS  DIS EN° DIS DIS  DECR ee e
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The 2900 Family has two basic application areas, computers and
controllers. The controllers have a number of requirements
that the computers do not have and.visa versa. "~ For this
reason, there is a new part of the family being created. The

first of these will be the Am29116 16-bit controller ALU which
handles bit operations, serial I/0, CRC, and provides less CPU
and more controller application features. A new sequencer
will be developed later on for this family which will be
designed specifically to handle realtime interrupts and which
will solve the problem with a minimum of hardware. (sort of a
super Am2910).  Watch for its announcement. '
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MISC ENABLES

ACTIVE LOW ENABLE
ACTIVE LOW DISABLE

EQU B#0
: EQU B#1

e w0

N oo

EN
DI
s Am2932 INSTRUCTION SET

RESET: EQU H#0 ; RESET

SUSPEND: EQU H#1 ; SUSPEND

PUSHD: EQU H#2 ; PUSH D
; POP S

POPS: EQU H#3

’
.
’
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TITLE PARTIAL .DEF FILE
WORD 1 ; DUMMY INSERT
: Am2910/Am29811 INSTRUCTIONS
JZ: EQU ~ H#0 ; JUMP ZERO (RESET)
CJS: EQU H#1 ; CONDITIONAL JUMP SUBROUTINE
CJP: EQU H#3 ; CONDITIONAL JUMP PIPELINE
CRTN: EQU H#A ; CONDITIONAL RETURN
CONT: EQU H#E : CONTINUE
; CONDITIONAL MULTIPLEXER
ANY: EQU H#0 ; TEST FOR ANY INTERRUPT
: ACTIVE
PASS: EQU H#1 ; GROUNDED INPUT = TRUE
FAIL: EQU H#9 ;. INVERTED GRND LINE (FALSE)

Am2914 INSTRUCTION SET

.MSTRCLR: EQU H#0 ; MASTER CLEAR

CLRLSTRD: EQU H#4 ; CLEAR INTERRUPT - LAST READ
READVCTR: EQU H#5 ; READ VECTOR

DISABLINT: EQU H#D ; DISABLE INTERRUPT REQUEST

ENABLINTR: EQU H#F

3
,

ENABLE INTERRUPT REQUEST

~o
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